Q1. What is the primary purpose of an electron energy analyzer as described in the text?
A. To generate ions by electron impact
B. To sort ions by mass-to-charge ratio
C. To measure the energy distribution of electrons from processes like photoionization
D. To accelerate electrons for collision experiments
Q2. Which technique is used in the book to produce nearly monoenergetic electrons around 0-15 eV?
A. Quadrupole analyzer
B. Trochoidal electron monochromator
C. Time-of-flight spectrometry
D. Magnetic sector analyzer
Q3. Monochromators are essential because:
A. They amplify the electron current
B. They filter electrons by mass
C. They narrow the energy spread of emitted electrons for high-resolution analysis
D. They increase electron beam intensity
Q4. A typical narrowest electron energy spread achieved in these monochromators is approximately:
A. ±1 eV
B. ±0.5 eV
C. ±0.1 eV
D. ±0.03 eV
Q5. Why are energy analyzers useful in studies such as electron capture or photoionization?

A. They detect heavier molecular fragments

B. They help correlate electron energy with resonance features in ion yield curves
C. They substitute magnetic sector mass analyzers
D. They adjust kinetic energy of molecular ions
Q6. Which parameter primarily determines the resolution of an electron monochromator?
A. Electron beam intensity
B. Energy width of the incoming electrons
C. Type of ion detector used
D. Path length of the analyzer tube
Q7. What configuration is often used to bend the electron path and select energies in a trochoidal
monochromator?
A. Magnetic focusing
B. Electrostatic deflection plates
C. Time-of-flight selection
D. Collimation slits only
Q8. Which of the following does not affect the energy resolution of an analyzer?
A. Electron beam divergence
B. Temperature of the gas
C. Analyzer geometry
D. Applied voltage stability
Q9. In energy analyzers, increasing the slit width leads to:
A. Improved energy resolution
B. Decreased electron throughput

C. Increased signal intensity but lower resolution
D. Reduced electron energy
Q10. What is the typical application of electron monochromators in gas-phase experiments?
A. Isotope separation
B. Measuring chemical shifts
C. Investigating electron attachment and ionization processes
D. Magnetic resonance studies
Q11. What is the primary reason for maintaining a low pressure in the electron interaction region?
A. To allow faster electrons
B. To prevent multiple scattering of electrons
C. To cool the sample
D. To improve beam collimation
Q12. Which voltage controls the kinetic energy of electrons in a trochoidal electron monochromator?
A. Filament voltage
B. Retarding field voltage
C. Acceleration voltage
D. Grid bias voltage
Q13. Electron energy analyzers measure electrons that are typically emitted from:
A. Ion traps
B. Dissociation events
C. Electron sources only
D. Mass analyzers

Q14.	Whic	h of	these	compo	nents i	s most	critical	in	defining	the	energy	passband	of	а
mono	ochron	nator	?											
A. Th	e emis	sion c	current											
B. Th	e analy	zer s	lits											
C. Th	C. The magnetic field													
D. Th	e press	sure i	n the ion	source										
Q15.	In the	disc	ussed e	xperime	nts. wha	at does	a resona	nce	structure	in th	e ion vie	eld curve ty	picall	İV
indic				•	•						,	•	•	•
A. Ra	ıpid ele	ctron	accelera	ation										
B. Ins	strumer	ntal no	oise											
C. Te	mpora	y neg	gative ior	n state fo	rmation									
D. Ine	elastic e	electr	on scatte	ering										
Ansv	wer Ke	y												
Q1. C	;													
Q2. E	3													
Q3. C	;													
Q4. E)													
Q5. E	3													
Q6. E	3													
Q7. E	3													
Q8. E	3													
Q9. C	;													
Q10.	С													

Q11. B

Q12. C

Q13. B

Q14. B

Q15. C